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Chapter 3  Crystallography and Diffraction Techniques 
 

3.1  General comments on molecular and non-molecular solids 

Inorganic materials and substances: molecular and non-molecular 

 Identification of molecular substances—spectroscopic methods and 

chemical analysis 

 Identification of non-molecular or crystalline substances—X-ray 

powder diffraction (and chemical analysis where necessary). Each 

crystalline solid has its own characteristic X-ray powder pattern 

which may be used as a “fingerprint” for its identification. (Powder 

Diffraction File)  

 

After identification of the substances, the next stage is to determine its 

structure.  

 molecular substances— further spectroscopic measurements; X-ray 

crystallography if the substance is crystalline (the molecules are 

packed together).  

 non-molecular substances— ‘structure’ takes on a whole new 

meaning. We need to know the crystal structure (i.e. the unit cell 

and its content). Defects and impurities are often extremely 

important and sometimes control properties.  E.g. color and lasing 

action of ruby, Cr-doped Al2O3, depend on the presence of Cr3+ 

impurities. ∴ the crystal structure of the host is important but the 

local structure centered on the impurities or defects control the 

properties.  

 

Properties of non-molecular nanoparticles. Optical properties depend on 

crystallite size. E.g. the color, band gap, photoconductivity of CdS 

nanoparticles depends on the size. 



3‐2 
 

 

 
 

TEM images of the as‐prepared CuInS2 QDs grown for 1 h at (a) 150 °C 

and (b) 170 °C. (c) HRTEM image of the as‐prepared CuInS2 QDs grown 

at 150 °C for 1 h with visible lattice fringes. (d) Selected‐area electron 

diffraction pattern of the 150 °C CuInS2 QDs. The arrows point to where 

the vertical white line crosses the crystal face rings. 
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XRD pattern of the CuInS2 QDs grown at 150 °C for 1 h indexed to the 

tetragonal chalcopyrite crystal structure. The standard pattern of 

CuInS2 (JCPDS file no. 85–1575) is provided at the bottom of this figure. 
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Colors of the CuInS2 QDs grown at different solvothermal temperatures 

for 1 h. These QDs are dispersed in hexane. 

 

 
 

CuInS2 quantum dots coated with CdS effectively sensitize a TiO2 film 

to provide an extraordinarily high photocurrent under one‐sun 

illumination 
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Mechanical and Electrical properties of ceramics (a larger scale). They 

are often determined by the microstructure, which covers the size, shape 

and distribution of crystalline grains, the bonding between grains, the 

segregation of any impurities to the surface.  

 

For non-molecular materials, we are interested in materials of different 

sizes raging from several angstroms to micron level. ∴ a wide range of 

techniques is needed to characterize the solids.  

 

The prime reason for the great difference between molecular and 

non-molecular materials lies in the status of defects and impurities. In 

molecular materials, defects are not allowed! Molecules have accurately 

fixed formulae or stoichiometries and are defect-free. 

 

In non-molecular materials, defects and impurities are almost 

unavoidable. Impurities give rise to non-stoichiometry, which may induce 

dramatic changes in properties.  

 

Table 3.1 shows comparison of toluene and Al2O3. Toluene is an 

extremely well-understood molecule; aluminum oxide shows a rich 

diversityof structures, properties and applications and is still being 

actively researched. 

 



3‐6 
 

 
 

3.2 Characterization of solids 

 

Some important issues: 

(a) Crystal structure 

(b) Crystal defects 

(c) Impurities 

(d) For polycrystalline solid− the number, size, shape and distribution of 

the crystalline particles 

(e) The surface structure 

 

Three main categories of physical techniques: diffraction, microscopic 

and spectroscopic techniques. 

 

X-ray diffraction is the principal technique of solid state chemistry. 
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3.3 X-ray diffraction 

 

a) Generation of X-rays 

X-rays are electromagnetic radiation of wavelength ~ 1 Å, between γ-rays 

and UV. X-rays are produced when high-energy charged particles (e.g. 

electrons) accelerated through 30,000 V, collide with matter. The resulting 

X-ray spectra usually consist of white radiation (a broad spectrum) and a 

number of monochromatic wavelengths.  

 

White radiation arises when the lost energy of the electrons (slowed down 

or stopped by collision) is converted into radiation. The lower wavelength 

limit corresponds to the X-ray highest energy and occurs when all the 

kinetic energy is converted into X-rays. λmin (Å) = 12400/V, V is the 

accelerating voltage.  

 

Monochromatic X-rays are used in almost all diffraction experiments. A 

beam of electrons strike a metal target (accelerated through ~ 30 kV), 

often Cu, to ionize some of the Cu 1s (K shell) electrons, Fig. 3.1a. An 

electron in an outer orbital (2p or 3p) immediately drops down to fill the 

vacant 1s with the energy released as X-radiation.  

 

Fig. 3.1b: For Cu, 2p → 1s, Kα transition, 1.5418 Å in wavelength. 

     3p → 1s, Kβ transition, 1.3922 Å in wavelength. 

The Kα transition occurs much more frequently than the Kβ. ∴ Kα is used 

in diffraction experiments.  

 

The Kα transition is a doublet: Kα1 = 1.54051 Å, Kα2 = 1.54433 Å 
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The two possible spin states of the 2p electrons make this doublet. In 

some experiments, the diffraction by Kα1 and Kα2 is not resolved. In other 

experiments, separate diffraction peaks may be observed (this can be 

overcome by removing the weaker Kα2 beam. 
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Table 3.2 shows the Kα lines of different target metals.  

  λ−1/2 = C(Z − σ)      Moseley’s law 

where Z is the atomic number, C and σ are constants. The wavelength 

decreases (energy increases) with the atomic number. 

 
Fig. 3.2: The electron beam, provided by a heated tungsten filament, is 

accelerated towards an anode (attached with a piece of Cu) by a voltage 

of ~ 30 kV. The chamber is known as the X-ray tube, is evacuated to 

prevent W oxidation. Be windows are very suitable for X-ray passing 

through, because Be has an atomic number of 4 (non-absorbing). Lead is 

very effective in shielding X-ray by absorbing. Continuous cooling of the 

anode is necessary because only a small fraction of the incident electron 

energy is converted to X-ray (a large fraction into heat). 

 

A monochromatic beam of X-rays is desired for diffraction. For Cu 

radiation, Ni foil is a very effective filter. The energy required to ionize 1s 

electrons of Ni corresponds to a wavelength of 1.488 Å, which lies 
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between the values for the Kα and Kβ lines of Cu (Ni absorbs Kβ and most of the 

white radiation). In Table 3.2, Fe (a lighter element) would absorb Cu Kα and 

Kβ because its absorption edge is displaced to higher wavelengths. Zn (a 

heavier element) would transmit both Cu Kα and Kβ. 

 

 

b) An optical grating and diffraction of light 

 

An optical grating is a piece of glass on which have been ruled a large 

number of parallel lines. The separation of the lines is a little larger than 

the wavelength of light, say 10,000 Å (Fig. 3.3a). Consider a beam of 

light hitting the grating, the lines act as secondary point (or line) sources 

of light and re-radiate light in all direction (光必須繞過 lines 才能通過 glass). 

Interference occurs between the waves originating from each line source. 

 
Constructive interference occurs in two directions as shown in Fig. 3.3b, 
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directions 1 and 2. Direction1: parallel to the incident beam, diffracted 

beams are in phase. Direction 2: beams are in phase, although beam B is 

one wavelength behind beam A. Directions between 1 and 2: B lags A by 

a fraction of one wavelength (destructive). Complete destructive 

interference occurs in direction 3, because B is half a wavelength behind 

A.  

 

In optical grating, there are several hundreds or thousands of beams. This 

causes the resultant diffracted beams to sharpen enormously after 

interference. ∴ Intense beams occur in directions 1 and 2, and no 

intensity over the whole range between 1 and 2. 

 

The direction in which constructive interference occurs are governed by 

wavelength, λ, and the separation of lines, a. In Fig. 3.4, beams 1 and 2 

(at an angle φ to the incident direction) are in phase: 

   AB = λ, 2λ, …, nλ 

But   AB = a sinφ 

Therefore  a sinφ = nλ,         where n is called the diffraction order 

 

From the above equations, we can understand why the separation of lines 

must be of the same order of magnitude as, but somewhat larger than, the 

wavelength of light. To observe 1st order diffraction, it must be that a > λ 

since sinφ < 1. If a < λ, only the zero order direct beam is observed. On 

the other hand, if a » λ, sinφ and φ must be very small and 1st order 

diffraction beam is not distinguishable from the primary beam; likewise 

for beams with n = 1,2,…, etc.).  

 

In order to observe well-separated spectra, grating spacings are usually 
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10,000−20,000 Å. The lines in an optical grating should be accurately 

parallel, or otherwise the diffraction spectra would be blurred. 

 
 

c) Crystal and diffraction of X-rays 

 

Crystals, with their regularly repeating structures, should be capable of 

diffracting radiation. Three types of radiation are used for crystal 

diffraction studies: X-rays, electrons and neutrons. When crystals diffract 

X-rays, the atoms or ions act as secondary point sources and scatter the 

X-rays. 

 

Historically, two approaches have been used to treat diffraction by 

crystals: 

i) The Laue equations 

1 D crystal, the separation, a, of the atoms in the row, the X-ray 

wavelength, λ, and the diffraction angle, φ; i.e. 



3‐13 
 

   asinφ = nλ 

A real crystal is a 3D arrangement for which three Laue equations may 

be: 

   a1sinφ1 = nλ 

   a2sinφ2 = nλ 

   a3sinφ3 = nλ 

For a diffraction beam to occur, these three equations must be satisfied 

simultaneously. The Laue equations provide a rigorous and 

mathematically correct way to describe diffraction by crystals. However, 

they are cumbersome to use. 

 

ii) Bragg’s law 

The Bragg approach to diffraction is to regard crystals as built up in 

layers or planes such that each acts as a semi-transparent mirror. Fig. 3.5 

shows the derivation of Bragg’s law. Two X-ray beams, 1 and 2, are 

reflected from the adjacent planes, A and B, with the angle of reflection 

equal to the angle of incidence. We wish to know under what condition 

the reflected beams 1’ and 2’ are in phase.  

     xy = yz = d sinθ 

   xyz = 2d sinθ = nλ 

   2d sinθ = nλ     Bragg’s law 

Because real crystals contains thousands of planes, cancellation of the 

reflected beams is usually complete if the incident angle is incorrect by 

more than a few tenths of a degree. 

 

It is customary to set n equal to 1 for Bragg’s law. For situations where, 

say, n = 2, the d-spacing is instead halved by doubling up the number of 

planes. (Note that 2λ =2dsinθ is equivalent to λ = 2(d/2)sinθ) 
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In some cases the planes derived from Bragg’s law correspond to layers 

of atoms, but this is not generally the case. The semi-transparent layers 

are a concept rather than a physical reality. The atoms do not reflect 

X-rays but scatter or diffract them in all directions. Nevertheless, the 

highly simplified treatment in deriving Bragg’s law gives exactly the 

same answers as are obtained by a rigorous treatment. We are fortune to 

have such a simple and picturesque, albeit inaccurate, way to describe a 

very complicated process. 

 
 

d) X-ray diffraction methods 

 

The X-ray diffraction experiment requires an X-ray source, the sample, 

and a detector to pick up the diffracted X-rays (Fig. 3.6). Three variables 

govern the different X-ray techniques: 

(a) radiation− monochromatic or variable λ 
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(b) sample− single crystal, powder or a solid piece 

(c) detector− radiation counter or photographic film 

Fig. 3.7 summarizes the most important techniques. Monochromatic 

radiation is nearly always used (the Laue method is used by 

metallurgists). 
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e) The powder method− principles and uses 

 

Fig. 3.8 shows that a monochromatic beam of X-rays strikes at a finely 

powdered sample (randomly oriented). For each set of planes, at least 

some crystals must be oriented at the Bragg angle, θ, to the incident beam 

and diffraction occurs. The diffracted beams may be detected either by 

surrounding the sample with a strip of photographic film (Debye-Scherrer) 

or by using a movable detector connected to a computer (diffractometer). 

 

The original method (Debye-Scherrer) is instructive (though is little used 

nowadays). For any set of lattice planes, the diffracted radiation forms the 

surface of a cone (Fig. 3.9, no restriction on the angular orientation). If 

the Bragg angle is θ, the angle between the diffracted and undiffracted 

beams is 2θ and angle of the cone is 4θ. The cones are detected by a strip 

of film wrapped around the sample (Fig. 3.8). Each cone intersects the 

film as two arcs (Fig. 3.10), which are symmetrical about the two holes 

(for incident entry and undiffracted exit).  

 

To obtain d-spacing, 

   S/2πR  =  4θ/360   

where S is the separation between pairs of corresponding arcs, R is the 

film radius. 2θ and therefore d (2d sinθ = nλ) can be obtained. The 

disadvantages: long exposure time (6 to 24 h) and low resolution. A finer 

collimator (for beam focusing) is needed. 

 

Diffractometry gives a series of peaks on a PC (or a strip chart). Both 

peak positions (d-spacings) and intensities are important for phase 

analysis. 
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Powder Diffraction File (International Center for Diffraction Data, USA), 

previously known as the ASTM or JCPDS file is an invaluable reference 

source for the identification of unknown crystalline materials. The file 

contains about 35, 000 materials. Materials are classified either according 

to their most intense peaks or according to the first eight lines. Problems 

arise if the material is not included in the file or if the material contains 

lines from more than one phase. 

 

 

f) Powder diffractometer 

 

The powder diffractometer has a proportional, scintillation or Geiger 

counter which scans a range of 2θ values at constant angular velocity (2θ 

= 10−80º usually sufficient). 

 

Fig. 3.11. A typical diffractometer trace. The scanning speed of the 

counter is usually 2º 2θ min-1 (about 30 min to obtain a trace). Intensities 

are taken as either peak heights or peak areas (more accurate).  
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For accurate d-spacings, an internal standard (such as KCl, whose 

d-spacings are known accurately) is mixed in with the sample. A 

correction factor, which may vary with 2θ, is obtained from the 

discrepancy between the observed and true d-spacing of the standard. 

 

Sample forms: a. thin layers of fine powder sprinkled onto a glass slide 

smeared with vaseline; b. thin flakes pressed onto a glass slide. A random 

arrangement of crystal orientations is important. If not random, preferred 

orientation exits and can introduce errors. Preferred orientation is a 

serious problem for materials that crystallize in a characteristic, very 

non-spherical shape.  
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Powder X-ray diffraction patterns of the ED25 and ED65 Cu2O powders 

(upper section) and the films (lower section). The standard diffraction 

pattern of Cu2O from JCPDS is provided at the middle of this figure. 

 

 

g) Focusing of X-rays: theorem of a circle 

 

The incident and diffracted beams are inevitably divergent and of low 

intensity. Using a convergent X-ray beam gives a dramatic improvement 

in resolution and significantly reduces the exposure times. Fig. 3.12a 
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shows the use of geometric properties of the circle to obtain a convergent 

X-ray beam. All angles subtended 對向,包住 on the circle circumference by 

the arc XY are equal, XCY = XC’Y = XC’’Y = α. A sample covers the 

arc between C and C’ such that the diffracting planes are tangential to the 

circle. Suppose X is a source of X-rays and XC and XC’ represent the 

extremities of a divergent X-ray beam, the diffracted beam, CY and C’Y, 

will focus to a point at Y (Fig. 3.12b, detector Y position varies).  

 
 

h) Crystal monochromators 

 

A crystal monochromator serves two functions: to give highly 

monochromatic radiation and to produce an intense, convergent X-ray 

beam. There are several sources of background scattering in diffraction 

experiments. Kα radiation may be separated from the rest by the use of 

filters, or, better, by a crystal monochromator. 
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A crystal monochromator consists of a large single crystal of, e.g. quartz, 

oriented such that one set of planes which diffracts strongly is at the 

Bragg angle to the incident beam. This Bragg is calculated for λKα1 and so 

only the Kα1 rays are diffracted, giving monochromatic radiation. To 

improve the efficiency, the crystal monochromator is bent, in which case 

a divergent X-ray beam is diffracted (according to the circle theorem) to 

give an intense, monochromatic and divergent beam. 

 

 

i) Guinier focusing cameras 

 

Fig. 3.13a. A Guinier camera uses a crystal monochromator M and also 

makes use of the circle theorem. A convergent beam from M passes 

through sample at X. Radiation that is not diffracted comes to a focus at 

A. Various beams diffracted by the sample focus at B, C, … etc. 

 

We know from the theorem of the circle that all radiations diffracted by 

the sample at 2θ focus at B. A film placed in a cassette which lies on the 

circle ABC. The film records the diffraction results (Fig. 3.13b) 
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j) A powder pattern of a crystalline phase is its ‘fingerprint’ 

 

Two main factors determine powder pattern: (a) the size and shape of the 

unit cell, (b) the atomic number and position of the atoms in the cell. ∴ 
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two materials have the same crystal structure but certainly will have 

distinct powder patterns. 

 

Table 3.3. KF, KCl and KI have the rock salt structure, but both the 

positions and intensities of the lines are different in each. Different 

positions are due to different unit cell sizes and different intensities are 

due to different atomic number and therefore different scattering powers. 

 
A powder pattern has two characteristic features: the d-spacings of the 

lines and their intensity. The likelihood of two materials have the same 

cell parameters and d-spacings decreases considerably with decreasing 

crystal symmetry. Cubic materials have only one variable, a. Triclinic 

powder patterns have six variables, a, b, c, α, β, γ. Problems of 

identification are most likely to be experienced with high symmetry. 

 

 

k) Intensities 
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Intensities are important: (a) quantitative measurements are necessary to 

solve crystal structure, (b) intensity data are needed in the powder 

fingerprint method to identify unknowns with the Powder Diffraction 

File. Two topics: the intensity scattered by individual atoms and the 

resultant intensity scattered from the large number of atoms in a crystal. 

 

1) Scattering of X-rays by an atom: atomic scattering factor 

An incident X-ray beam is an electromagnetic wave with an oscillating 

electric field, which can set each electron of an atom into vibration. A 

vibrating electron emits radiation which is in phase or coherent with the 

incident X-ray beam. Coherent scattering may be likened to an elastic 

collision between the wave and the electron (no energy loss and thus no λ 

change). The electrons become secondary sources of X-rays.  

 

  IP ∝ 1/2 (1 + cos22θ)   Thomson equation   (3.5) 

IP: scattered density at any point P; 2θ: angle between the incident beam 

and the diffracted. From the Thomson equation, the scattered beams are 

most intense when parallel or antiparallel to the incident and are weakest 

when at 90º 2θ. The Thomson equation is also known as the polarization 

factor. 

 

Compton scattering: caused by interaction between X-rays and more 

loosely held valence electrons. X-rays lose energy and the scattered are of 

longer wavelength (no longer in phase, like background white radiation). 

This is an important effect with the lighter elements, being especially 

deleterious to the patterns of organic materials. 
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Fig. 3.14a. The X-ray scattered by an atom are the resultant of the wave 

scattered by each electron in the atom. Like beams 1’ and 2’, all electrons 

scatter in phase irrespective of their position. The scattering factor (form 

factor, f) of an atom is proportional to its atomic number, Z, or, more 

strictly, to the number of electrons possessed by that atom. 

 

For scattering at some 2θ, a phase difference XY exists between beams 1” 

and 2”. Because the distances between electrons within an atom are short, 

λ < XY, destructive interference occurs and apparently the scattered 

intensity decreases with increasing 2θ (因為 XY increase, 但仍遠小於λ). The 

cancellation effect is also greater for smaller λ. Fig. 3.14b show the 

variation of the form factor with sinθ/λ.  

 

Consequences of form factor f = funct. (Z, sinθ/λ)   

Powder patterns are weak at high angles. It is difficult to locate light 

atoms because their diffracted radiation is so weak. H cannot be located 

unless all others present are extremely light. Atoms that have as many 

electrons as oxygen can be located easily unless a very heavy atom (such 

as uranium) is present. Structures that have a considerable number of 

atoms have similar atomic number, e.g. large organic molecules with C, 

N and O, or aluminosilicates with Al and Si, are difficult to solve or 

distinguish. Using neutrons can solve the problem because the neutron 

form factors are not a simple function of Z. Light atoms, Li and H, are 

often strong neutron scatterers. 
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2) Scattering of X-ray by a crystal— systematic absence 

In principle, each set of lattice planes can give rise to a diffracted beam 
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(Table 3.4 for an orthorhombic cell). In practice, the intensity by certain 

sets may be zero. Systematic absences arise if the lattice type is 

non-primitive (I, F, etc) or if elements of space symmetry are present.   

 

 
Consider α-Fe, Fig. 3.15a, which is bcc. Reflection from the (100) planes 

has zero intensity and is systematically absent. This is because, at the 

Bragg angle for these planes, the body center atom planes diffract X-ray 

exactly 180º out of phase(指X-ray的波動而非 2θ)relative to the (100) planes. In 
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contrast, a strong 200 reflection is observed (Fig. 3.15c). Similarly, the 

110 reflection is observed where 111 is absent in α-Fe. Table 3.5 shows a 

simple characteristic formula for systematic absence. For bcc, reflections, 

for which h+k+l is odd, are absent (e.g. 100, 111, 320). 

 

Two conditions must be met for systematic absence: the diffracted beams 

must be out of phase (by λ/2 or π) and of the same amplitude (determined 

by scattering powers, f). 

 
Consider NaCl, a rock salt, in which either Na or Cl is fcc. According to 

Table 3.5, (110) is systematic absent. Fig. 3.16a shows that (110) planes 

have Na and Cl ions but equal numbers of the ions are midway between 

the planes. Complete cancellation occurs. For the (111) planes, Na ions 

lie on the planes and Cl ions lie midway between them. Since they have 

different scattering powers the destructive interference is only partial. The 

intensity of (111) reflection is related to the difference in atomic number 
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of anion and cation. Since K+ and Cl− are isoelectronic, the (111) intensity 

of KCl is zero. The intensity order: 

   KCl < KF < KBr < KI   (Table 3.3) 

The (100) reflection is observed with primitive cubic CsCl because the 

scattering powers of Cs+ and Cl− are different. 

 
 

3) General formula for phase difference, δ 

Fig. 3.17a shows two (100) planes of an orthogonal unit cell. A and A’ at 

the origin of adjacent unit cells. For the 100 reflection, A and A’ scatter in 

phase because their phase difference is exactly one wavelength, 2π 

radians. B situated halfway between adjacent (100) planes has fractional 

coordinate of x = 1/2. The phase difference between A and B is 1/2 × 2π = 

π, i.e. out of phase (Fig. 3.17b). Atom C situated at x has a phase 

difference relative to A of 2πx. 

 

Consider the (200) reflection, Fig. 3.17c. Since d200 = (1/2)d100, the 

Bragg’s law gives sinθ200 = 2sinθ100, ∴ θ200 >> θ100. Atoms A and B have 
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phase difference of 2π for the (200) reflection and π for the (100) 

reflection. Thus, halving d is to double the relative phase difference 

between two atoms. A and C have a phase difference of 2⋅2πx for the 

(200) reflection.  

 
For the general case of an h00 reflection, the phase difference, δ, between 
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A and C is given by 

    δ = 2πxh 

The phase difference between atoms depends on: 1. the indices of the 

reflection; 2. the coordinates of the atoms. 

 

In 3D, for reflection indices (hkl) the phase difference between the origin 

and an atom at (x,y,z) is given by 

   δ = 2π(xh +yk + zl) 

Let us use this equation for fcc γ-Fe with atoms at corners and face 

centers, 

  0,0,0;  2
1 , 2

1 ,0;  2
1 ,0, 2

1 ;  0, 2
1 , 2

1  

The phase differences δ for the four positions relative to the origin are 

  0;  π (h + k);  π(h + l);  π(k + l)  

 

If h, k, and l are either all even or all odd, the phases are in multiples of 

2π, and are in phase with each other. If h is odd and k and l are even, the 

four phases reduce to 

  0;  (2n +1)π;  (2n +1)π;  2nπ 

The first and last are out of phase with the middle two and complete 

cancellation occurs. This example shows the condition for systematic 

absence due to face centering (Table 3.5).  

 

 

4) Intensities and structure factors 

Considering any atom j in the unit cell, the diffracted wave of amplitude fj 

and phase δj is a sine wave of 

   Fj = fjsin(ωt − δj) 

The waves diffracted from each atom in the cell have the same angular 
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frequency, ω, but may differ in f and δ.  

 

In complex notation, 

  Fj = fj (cosδj + i sinδj)  or  Fj = fj exp(iδj)   where i = 1−  

The intensity of a wave is obtained by multiplying the equation for the 

wave by its complete conjugate; i.e.  

   I  α  fj exp(iδj)⋅ fj exp(−iδj) 

   I  α  fj
2 

Alternatively,  

[fj (cosδj + i sinδj)][ fj (cosδj − i sinδj)] = fj
2(cos2δj + sin2δj) = fj

2 

 

Substituting the expression for δ,  

  ( )jjjjj lzkyhxifF ++= π2exp  

   ( ) ( )]2sin2[cos jjjjjjj lzkyhxilzkyhxf +++++= ππ  

The structure factor or structure amplitude, Fhkl, for the hkl reflection; i.e. 

   ∑
→=

=
nj

jjhkl ifF
1

)]exp([ δ  

OR 

∑ +=
j

jjjhkl ifF )sin(cos δδ  

 

The intensity of the diffracted beam Ihkl is proportional to |Fhkl|2 and is 

obtained from 

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
+=∝ ∑∑

j
jjj

j
jjjhklhkl ififFI )sin(cos)sin(cos2 δδδδ  

   ∑ ∑+=
j j

jjjj ff 22 )sin()cos( δδ  
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The 202 reflection in CaF2 has a d-spacing of 1.929 Å (a = 5.464 Å). 

  θ202 = 23.6º and sinθ/λ = 0.259 for λ = 1.5418 Å (Cu Kα) 

Form factors for Ca and F are given in Fig. 3.14b for sinθ/λ = 0.259 

   fCa = 12.65  and  fF = 5.8 

   →  F202 = 97 

 

Table 3.6 shows the observed Fhkl values and the calculated values after 

scaling. In solving unknown structure, the objective is always to obtain a 

model structure (by assuming atomic coordinates) for which the Fhkl
calc 

values are in good agreement with experimental Fhkl
obs values. 

 

5) R-factors and structure determination 

Table 3.6 shows the values of Fhkl
calc for the first five lines in the CaF2 

powder pattern.  

For Fhkl
obs = corrI  , the experimental intensities are corrected for Lp 

factor and multiplicity to give Icorr. In order to compare Fhkl
obs and Fhkl

calc, 

the Fhkl
obs values are scaled such that Σ Fhkl

obs = Σ Fhkl
calc.  Multiplication 

of each Fhkl
obs value by 141 gives the scale values listed in Table 3.6.  

 

The measure of agreement between the scaled Fhkl
obs and Fhkl

calc, is given 

by the residual factor or R-factor defined by 
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An R-factor of 0.15 (or 15%) is obtained for the data in Table 3.6. Usually, 

when R is less than 0.1 to 0.2, the proposed structure is essentially correct. 

A structure which has been solved fully using good quality intensity data 

has R typically in the range of 0.02 to 0.06. 
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